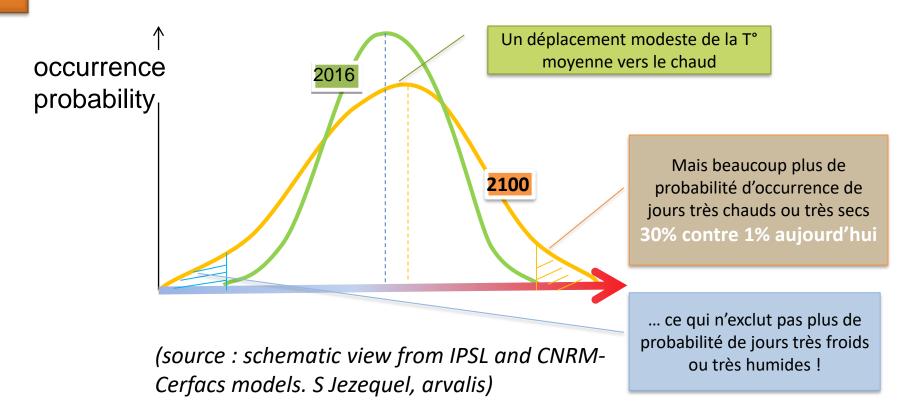


Agriculture de Conservation des Sols Eclairages techniques sur l'ACS en France en situation de dérèglement climatique

Stéphane Jézéquel s.jezequel@arvalis.fr

Plan de l'intervention

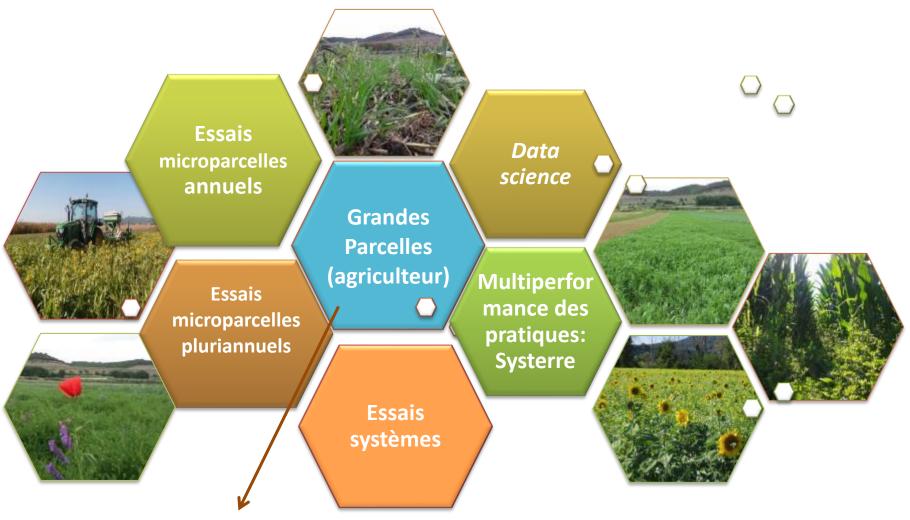
- Acquisition de références en réseaux d'agriculteurs:
 3 exemples
- Quels effets observables en rythme de croisière ?
- Bilan: variants et invariants



Contexte climatique

L'urgence climatique

Distribution (base 2016) des jours de l'année (du plus froid ou plus humide à gauche, au plus chaud ou plus sec à droite), courbe verte, et distribution prevue dans le Sud-Est de la France en 2100 (courbe orange) selon les sorties de 2 modèles régionaux utilisés en France (GIEC).



ARVALÍS Institut du végétal

44,1 °C CONQUEYRAC (30)

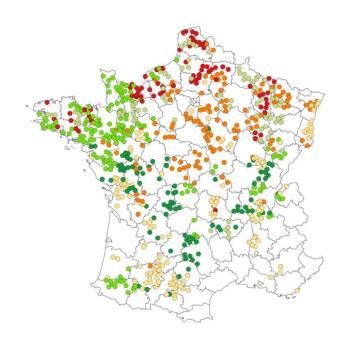
Acquisition de références: Mixer les approches

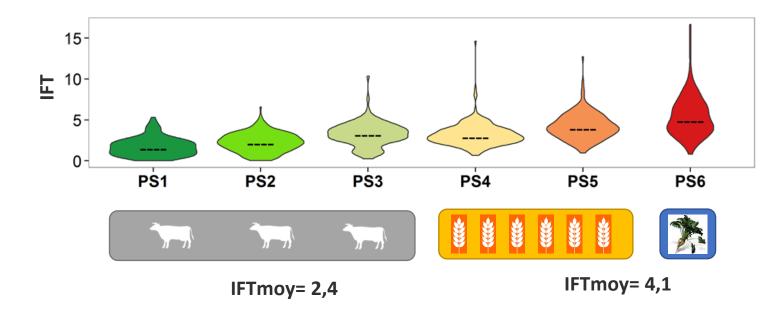
Diagchamp: Une méthodologie adaptée conçue pour cet objet

Acquisition de références en réseaux d'agriculteurs: réseaux Dephy

> Analyse de données produites par des réseaux d'agriculteurs

Réseau de fermes DEPHY



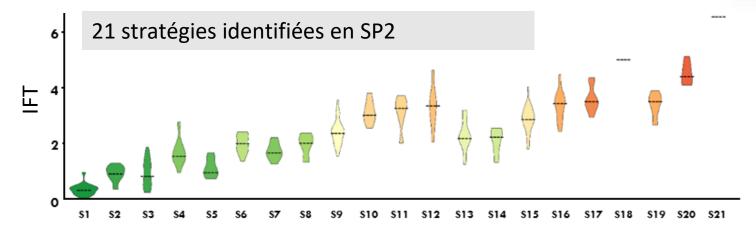

Thèse de Martin Lechenet (2017)

Impact du contexte

Sol, climat, association à l'élevage, accès à l'irrigation, cultures industrielles...

> Analyse de données produites par des réseaux d'agriculteurs

Réseau de fermes DEPHY



Thèse de Martin Lechenet (2017)

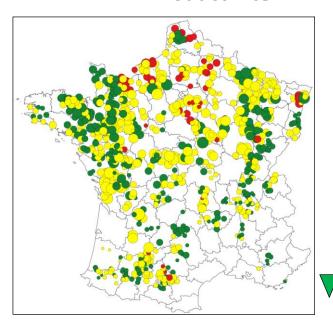
Profils de systèmes économes en pesticides

Résultats

- Les stratégies à faible IFT combinent toujours plusieurs leviers techniques
- Principaux leviers identifiés
 - ✓ Prairies temporaires
 - ✓ Diversification : Cultures rustiques, diversité des périodes de semis
 - ✓ Diversité des variétés
 - ✓ Retard de date de semis des céréales
 - ✓ Réduction de doses
 - ✓ Travail du sol
 - √ Niveaux de fertilisation

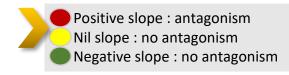
73 % de la variabilité d'usage de pesticide est expliquée par la mise en œuvre de combinaison de leviers alternatifs

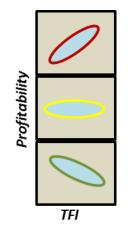
Analyse de données produites par des réseaux d'agriculteurs


Réseau de fermes DEPHY

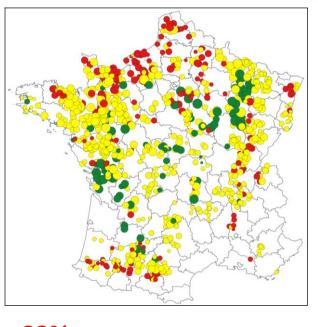
Thèse de Martin Lechenet (2017)

IFT x Productivité




6% céréaliers éleveurs forts potentiels potentiels moyens betterave-pdt prairies + maïs

Pas d'antagonisme dans 94 % des cas


39%

Echelle système de culture

IFT x Rentabilité

22%

11%

forts potentiels betterave pdt maïs semence


céréaliers potentiels moyens colza blé orge faibles marges

Pas d'antagonisme dans 78 % des cas

Acquisition de références en réseaux d'agriculteurs: réseau BAG'AGES (Sud-Ouest)

Réseau de fermes Sud-Ouest Bag'AGES

			Pédoclimat					
Irrigation	Type d'agriculture	Boulbènes	Coteaux argilo- calcaires	Champ- agnes	Groies	Sables	Total	
Coo	Conventionnelle	0	16 → 12	1	5	0	22 > 18	
Sec	AB	1	$4 \rightarrow 5$	1	0	0	$6 \rightarrow 7$	
lumia, , á a	Conventionnelle	5	10 → 8	2	0	$7 \rightarrow 6$	24 →21	
Irriguée	AB	1	2	0	0	1	4	
Total		7	32 → 27	4	5	8 → 7	56 → 50	

Exploitations agricoles:

59 exploitations agricoles au départ du projet, suivies sur 3 campagnes

- → 56 analysées en 2017
- → 55 analysées en 2018
- → 50 analysées en 2019

Analyse séparée des exploitations conventionnelles et des exploitations bio

BAG'AGES

Critères de classification des exploitations

Couvert	Niveau
Sans couvert	C 1
0 < % de parcelles avec Couvert ≤ 50%	C2
% de parcelles avec Couvert > 50%	C3

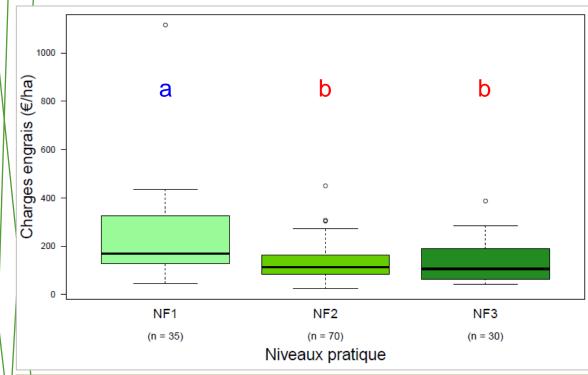
Allongement et diversification	Niveau
Nombre de culture de la rotation dessous de la situation de référence	A0
Nombre de culture de la rotation égale à la situation de référence	A 1
Nombre de culture de la rotation égale à la situation de référence + 2 cultures	A2
Nombre de culture de la rotation égale à la situation de référence+ 4 cultures	А3

Travail du sol	Niveau
Labour	W0
Non-labour profond	W1
Non-labour superficiel+ strip-till	W2
Semis direct	W3

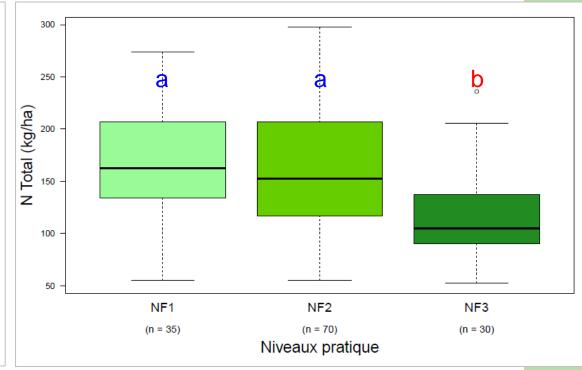
Situation	Irrigation	Boul
de référence	Sec	Pa réfé
	Irriguée	N

on i	Irrigation	Boulbènes	Champagnes	Ctx argilo- calcaires	Groies	Sables
се	Sec	Pas de référence	TRN/BLE/ BLE ou ORG	BLE/TRN	CZH/BLE/ ORG	/
	Irriguée	MIS	Pas de référence	MIS	/	MIS

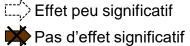
Cx-Ay-Wz = S(x+y+z)


ex : C1-A3-W2 = S6

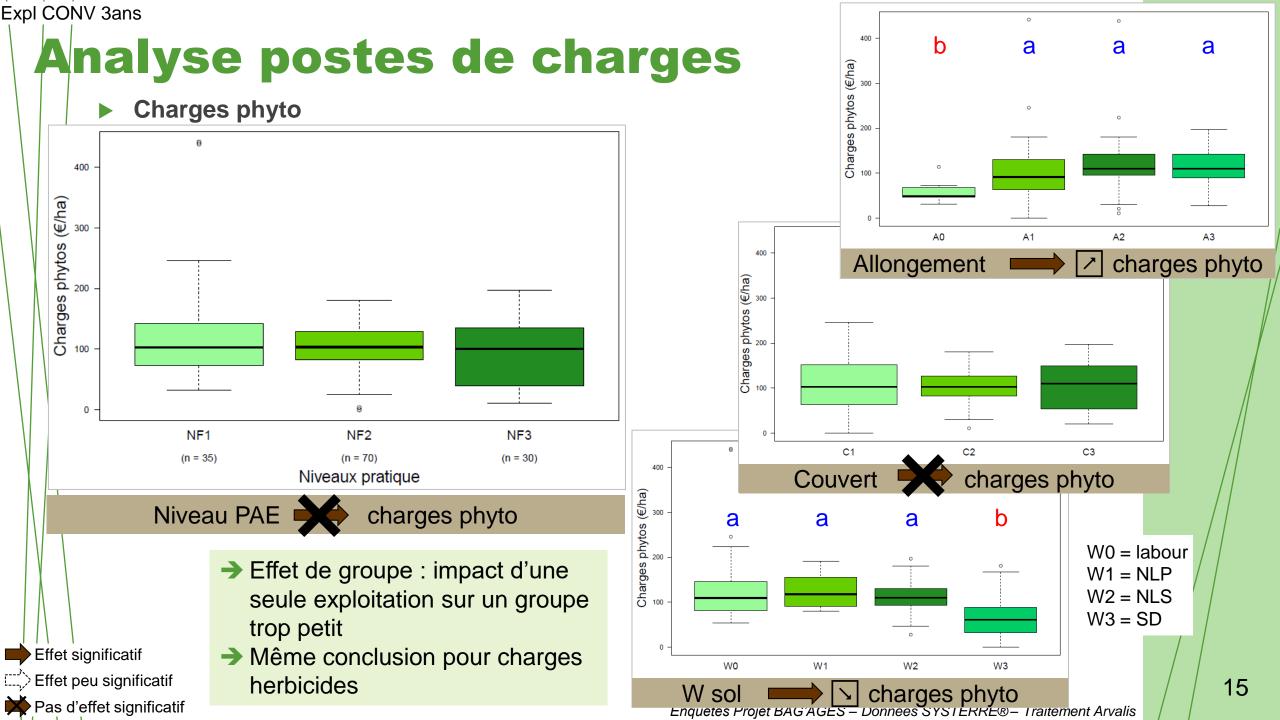
Score	Niveau
S2 - S4	N1
S5 - S6	N2
S7 - S9	N3


Analyse postes de charges

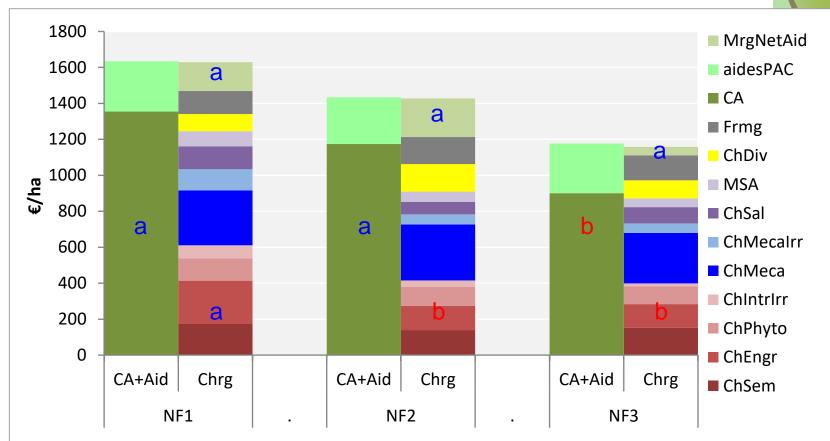
Charges engrais



Dose azote


Niveau PAE apport azote

Moy U/ha	UN
NF1	168
NF2	159
NF3	118


Effet significatif

BAG'AGES

Expl CONV 3ans b chiffre d'affaire Niveau PAE Charges totales marge nette (€/ha) b Niveau PAE charges totales Marge nette avec aides (€/ha) a a Niveau PAE marge nette

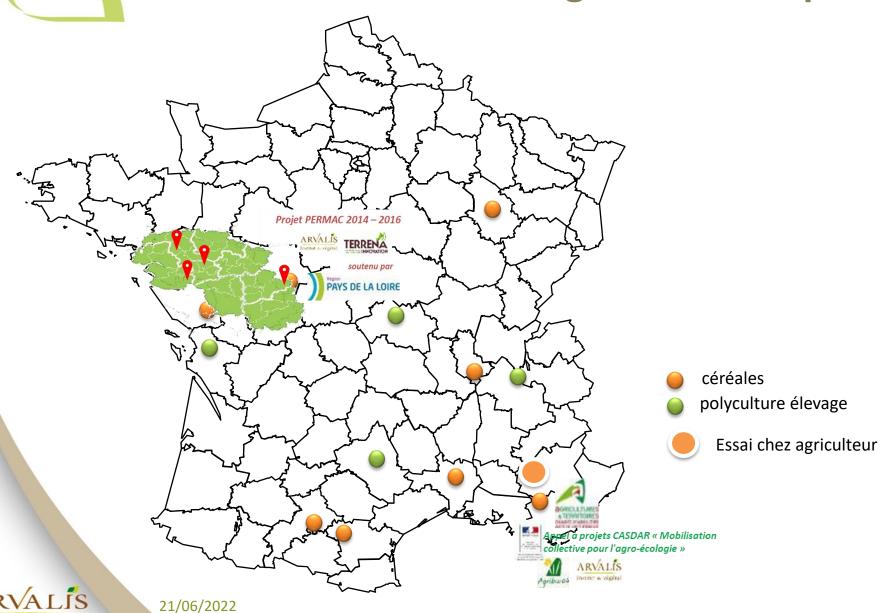
Analyse marges

→ Des marges nettes similaires mais différentes par leur construction BAG'AGES

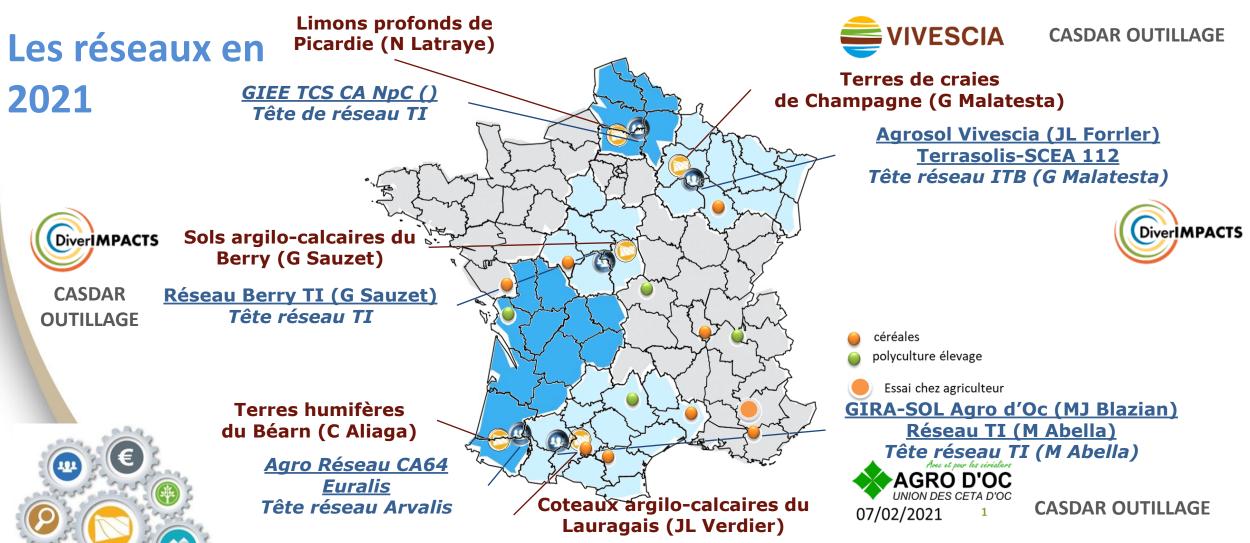
Synth rés

hèse des sultats	Rédu Trav du so	vail	Introd Couv	verts	Allong Rota (A	ition	Niveau de Pratique (NF)	Remarques
Suitats	attendu	obtenu	attendu	obtenu	attendu	obtenu	obtenu	
Ch. semences			7	0			0	
Ch. sem couvert			7	7			7	
Ch. engrais			$\overline{\ \ }$	/	\searrow	0	$\overline{\ \ }$	Effet aslt et pédoclim
Ch. phyto	7	\searrow		0	\searrow		0	Effet groupe
Ch. herbicides	7	\searrow		0	\searrow	0	0	Effet groupe
Ch. herbi couvert			7	7			7	
Ch. eau irrig			7		\searrow			Effet aslt et pédoclim
Ch. méca	\searrow	\searrow	7	0			0	
Ch. méca W sol	\searrow	\searrow					$\overline{\ \ }$	
Ch. méca semis		0					0	
Ch. méca irrig			7		$\overline{\ \ }$			Effet aslt et pédoclim
Ch. salariales		0		0		0	0	
MSA		0		0		0	$\overline{\ \ }$	
Ch. diverses		0		0		0	0	
Fermage		0		0		0	0	
Chiffre d'affaire		0		0		0	$\overline{\ \ }$	Effet aslt et pédoclim
Charges totales		0		0		/	$\overline{\ \ }$	Effet aslt et pédoclim
Marges		0		0		0	0	
Rendement (BT, MG)		0		0		0	0	
Coût de production (BT, MG)		0		0		0	0	

Conclusion


- ► Peu d'impact du niveau de pratiques agroécologiques sur les charges :
 - Masqué par des effets pédoclimats et/ou rotations
 - Niveau de charge trop faible pour avoir un impact au global
- ▶ Pas d'impact du niveau de pratiques agroécologiques sur les marges nettes et directes :
 - ► Construction différente : des chiffres d'affaire et des niveaux de charges plus faibles en NF3 qu'en NF1
 - ► Effet pédoclimat important
- ▶ Pas d'impact des niveaux de pratiques agroécologiques sur l'analyse des cultures principales
- ▶ Pour les exploitations bio, trop peu d'exploitations et très forte dispersion des résultats
 → pas d'impact mis en évidence des pratiques agroécologiques
- Limites
 - ► Trop peu d'exploitations et inégalement réparties sur le BAG
 - Des exploitations en mouvement rendant difficile l'analyse uniquement du système de culture principal
 - Technicité et sensibilité aux pratiques culturales variables

Acquisition de références en réseaux d'agriculteurs: réseau ACS ARVALIS


Réseau ACS ARVALIS: agriculteurs experts en ACS

Institut du végétal

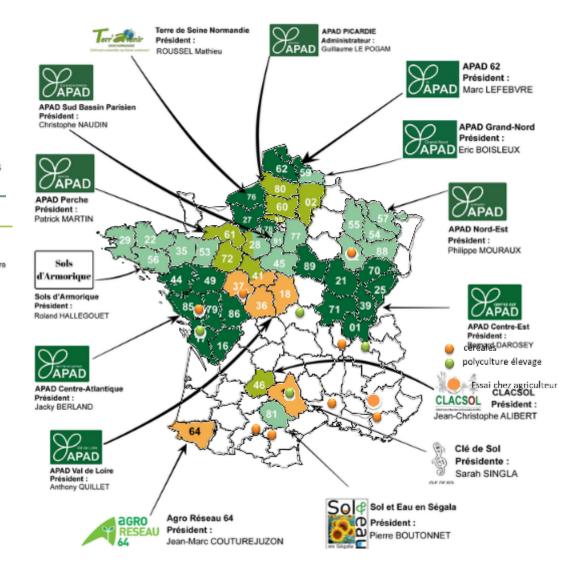
Réseau ACS arvalis et dispositifs partenaires

Construire ensemble les systèmes de culture de demain

L'APAD, un réseau de 1000 agriculteurs fédérés en 15 associations régionales

L'APAD : Réseau d'agriculteurs en Agriculture de Conservation des Sols

Président: François MANDIN


Association pour la Promotion d'une Agriculture Durable Rue grande - 21450 ETORMAY

contact@apad.asso.fr

Convention de partenariat signée lors du SIA 2022

Réseau ACS Arvalis + APAD

Quelques principes à partager

Les agriculteurs : co-producteurs de références scientifiques

Atouts et limites des systèmes de semis direct sous couvert végétal ARVALÍS

Stéphane Jézéquel, A.-M. Bodilis, J.Labreuche et coll. Institut de végéts
Remerciements à tous les agriculteurs du réseau SCV Arvalis et qui accueillent des
essais: MM. Abadie, Appert, Benoît, Beranger, Boissinot, Bouvin, Brémond,
Chambe, Charpentier, Charpin, Déon, Destouches, Epoudry, Gaborieau, Giraud,
Guillot, Jacob, Joly, Joubert, Lemey, Leroux, Lhermey, Marchioni, Masucco, Paul,
Pellestor, Quillet, Richaud, Roy, Rudelle, Sauvat, Thieblemont, Vernet, Vincent.

Partenaires média

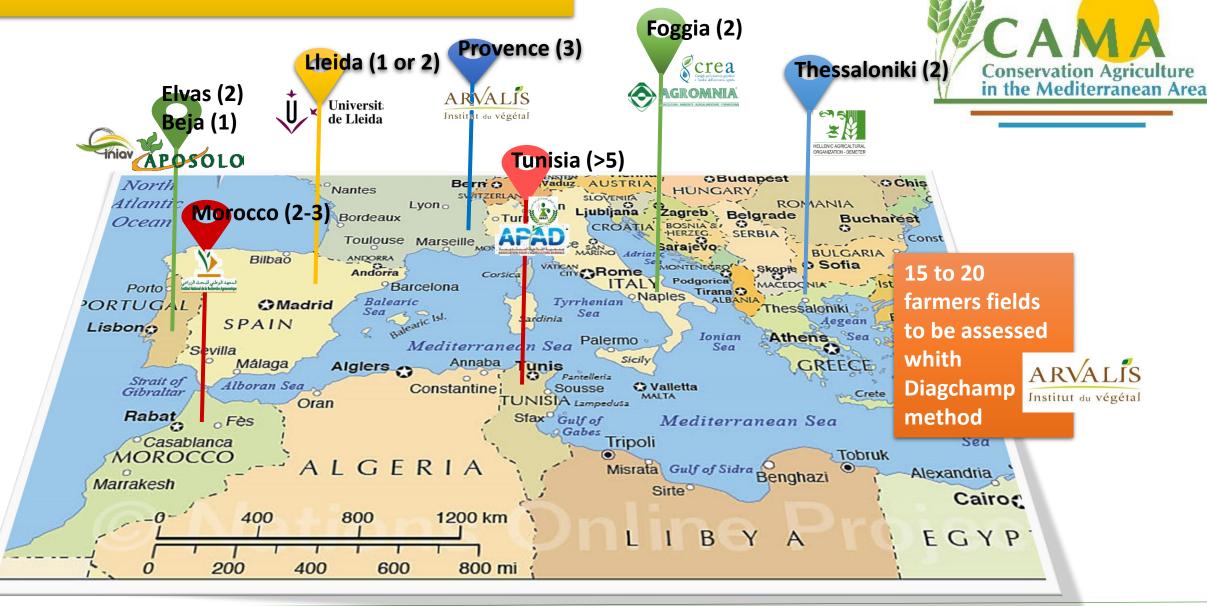
A l'international...

C A MA

Conservation Agriculture in the Mediterranean Area

Projet européen CAMA
Lever les freins à l'adoption de
l'agriculture de conservation des
sols autour du bassin
méditerranéen

http://www.camamed.eu/


"Diagchamp" method - YouTube

<u>Diagchamp: a methodology for on-farm diagnostic assessment | Zenodo</u>

Ouverture internationale

Economie

- Effet > sur rendt du blé qui suit colza + TB
- Baisse coût désherbage

- Mauvais régulation du couvert : baisse rendement blé 35%

IMPACT ÉCONOMIQUE : très dépendant de la culture, des espèces et de la conduite du couvert

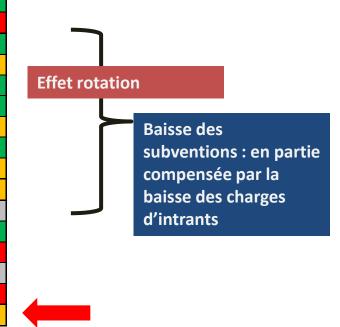
Lieu - Année	Succession*	Trèfle	blanc	lanc refles ann		efles annuels Luzerne		Lotier corn.	
Lieu - Allilee	Succession	Détruit	Vivant			Détruit	Vivant	Détruit	Vivant
Boigneville - 2011/2013	Co-BTH-OP-BTH	48 à +100							
Boigneville Simulation	Co-BTH-OP-BTH	+64	-396 à +76**			+32	+24		
Dosnon - 2014/2016	Co-BTH	+52	+116	Λ		-54	+30	₋ 162	-186
La Jaillière Simulation	MF-BTH			-1/38 à -	162			Λ	
B. Destouches - 2015 et 2016	LUZ-LUZ-BTH-BTH						+114		
GAEC St Armel - 2015 et 2016	Interculture-MF-BTH		+37				·		

^(*) Co=Colza, BTH = Blé tendre d'hiver, OP= Orge de printemps, MF = Mais fourrage, LUZ = Luzernière porte-graine. (**) Trèfle insuffisamment à correctement régulé.

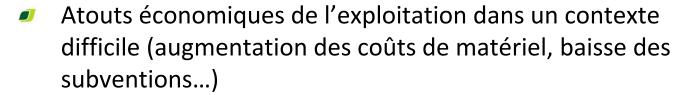
Écart au témoin pour la rotation <-75 €/ha <-75 à -26 €/ha <-25 à +25 €/ha +25 à +75 €/ha >+75

Tableau 1: Écart de marge nette (en €/ha) par rapport au témoin pour la succession culturale entière.

- Charges semences
- Charges désherbage maïs
- Charge méca maïs (binage)
- Coût semences
- Coût herbicide
- Baisse rendement blé



Evaluation économique



Système global

	2012-2014	2018-2020	Evolution
Produits (€/ha)	1293	1481	15%
Subventions (€/ha)	413	272	-34%
Total intrants (€/ha)	355	290	-19%
semences (€/ha)	101	147	46%
Fertilisation (€/ha)	165	68	-59%
Fongicides (€/ha)	10	1	-90%
Herbicides (€/ha)	52	56	8%
Insecticides (€/ha)	9	2	-74%
Eau irrigation (€/ha)	1	15	1059%
Marge brute avec subventions (€/ha)	1350	1192	-12%
Charges de mécanisation sans irrigation (€/h	239	243	1%
Fuel (€/ha)	43	42	-3%
Charges irrigations (€/ha)	92	154	68%
Divers (€/ha)	60	60	0%
Cotisations sociales €/ha)	75	182	142%
Marge directe avec subventions(€/ha)	944	612	-35%

Résultats très dépendants de l'exploitation

- Ferme prête à affronter les crises économiques
- Mais encore non suffisant : trouver de nouvelles cultures avec de nouveaux débouchés. Rémunération Carbone?

Evaluation environnementale

Effet rotation

Effet irrigation

GLOBAL SYSTEM

		2012-2014	2018-2020	Evolution
Production	on brute d'énergie (MJ/ha)	101237	64470	-36%
Consomr	nation totale d'énergie primaire			
(MJ/ha)		29910	36668	23%
Consomr	nation d'énergie utile pour			
l'irrigatio	n (MJ/ha)	4742	8200	73%
Consomr	nation d'énergie utile carburant			
(MJ/ha)		2017	2182	8%
Emission	GES (eqCO2/ha)	1128	745	-34%
Total mat	ières actives (g/ha)	1143	733	-36%
	Insecticide	26	6	-76%
	Fongicide	33	4	-87%
	Herbicide	976	723	-26%
ts très	Herbicide culture	614	329	-46%
lants de	Herbicide interculture	362	394	9%

Résultats très dépendants de l'exploitation

21/06/2022

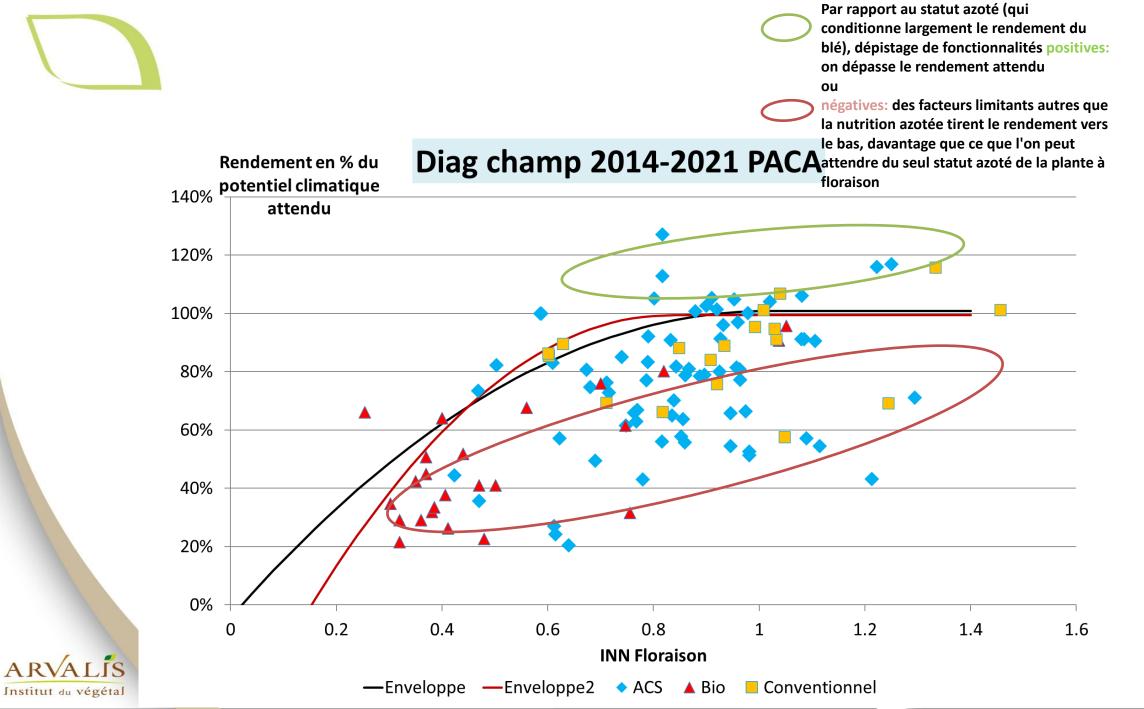
Point d'étape: Pour dégager les invariants et les variants du système, 2 niveaux d'analyse sont nécessaires: individuel et collectif

1- Niveau de valorisation individuel

Exemple d'analyse de l'ITK issue de ce diagnostic champ (qui éclairera utilement une évaluation Systerre par exemple!)

nombre d'épis/m²	nombre de grains/m²	nombre de grains/épi	PMG (g)	rendement (q/ha)	réalisation du potentiel de rendement (%)	taux de protéines (%)
318	6000	19	53	32	49	15.5
<mark>Correct</mark>	Assez faible	Très faible	<mark>Bon</mark>	<mark>Faible</mark>	<mark>Faible</mark>	<mark>Bon</mark>

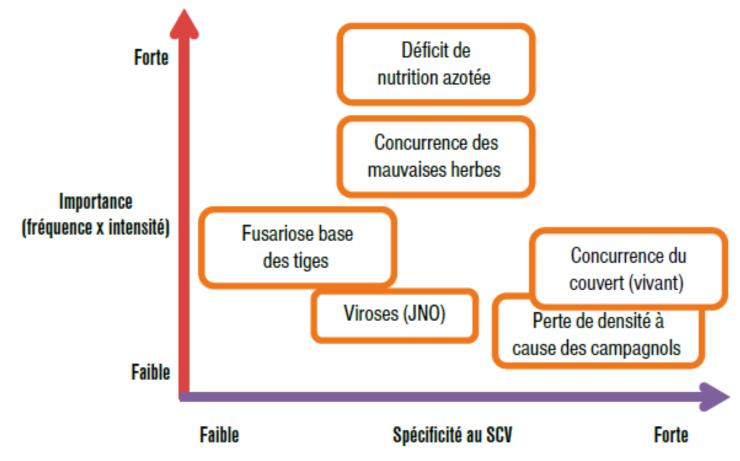
Itinéraire technique			Impact sur le	Impact sur la	Gestion du	Gestion du	Gestion des stress
date	opération	produit	rendement	qualité	stress azoté	stress hydrique	parasitaires
?	Désherbage du sainfoin	Glyphosate 1.8l/ha + Chardex 0.6l/ha + Silwett 0.1l/ha					
16/10	Semis	Variété Claudio					
16/10	Engrais organique	Guanito 170 kg/ha localisé					
17/10	Désherbage et anti-pucerons	Athlet 2.9 I/ha + Corano 125 g/ha					
01/02	Fertilisation azotée	Ammonitrate 33.5 150 kg/ha					
03/03	Fertilisation azotée et soufrée	50 U N et 56 U S					
	Fertilisation tardive	Non					
	Irrigation	Non disponible					
21/04	Régulation du sainfoin	Chardex 1I/ha					

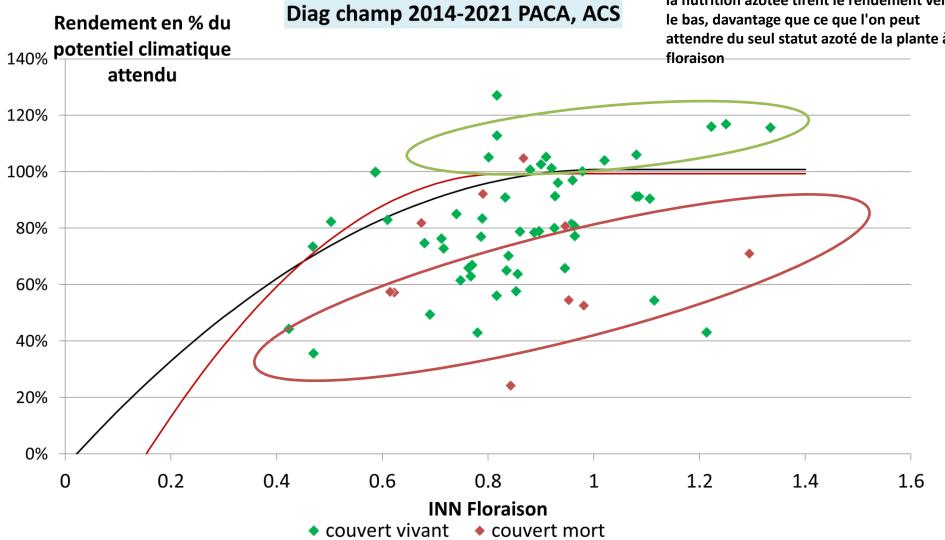


Quels invariants? >

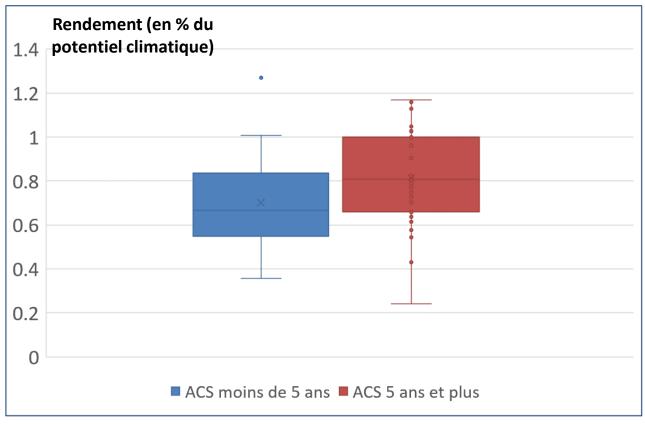
Méthode DiagChamp
Analyse de groupe sur nuage de points, construit sur:
ordonnée = atteinte du potentiel attendu;
abscisse = mesure du facteur limitant principal
attendu (qui permet de parcourir toute la gamme
des parcelles)

FACTEURS LIMITANTS : des facteurs plus ou moins spécifiques au système SCV




Figure 2: Hiérarchie des facteurs limitants de la réussite du blé en semis direct sous couvert.

Effet des couverts vivants sur le rendement

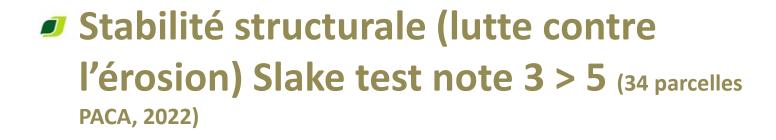

Par rapport au statut azoté (qui conditionne largement le rendement du blé), dépistage de fonctionnalités positives: on dépasse le rendement attendu ou

négatives: des facteurs limitants autres que la nutrition azotée tirent le rendement vers le bas, davantage que ce que l'on peut attendre du seul statut azoté de la plante à

La productivité du système s'améliore progressivement

	INN		% rendement	
ACS jeune		0.83		0.70
ACS routine		0.87		0.82
wilcoxon p value		0.33		0.02

- Meilleure maîtrise du système par l'agriculteur (adventices, fertilisation...)
- Système qui produit ses effets (sol, minéralisation, matière organique, souplesse date de semis...)
- Observation de déplafonnement du rendement dans certaines situations.
- Être vigilant pour ne pas « trop faire confiance » au système (azote, risques viroses).



21/06/2022

Quels effets en rythme de croisière?

Amélioration de la structure du sol

Infiltrabilité de l'eau (x3) (15 parcelles PACA)

Diminution par 2 des flux d'azote lixivié (modélisation CHN projet Sedisc'eau lixivié (modélisation CHN projet

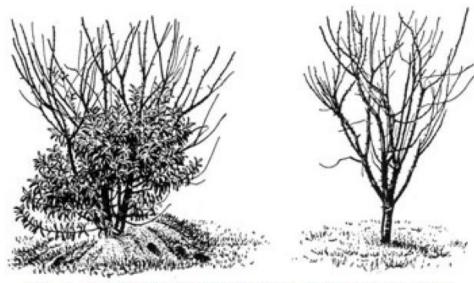
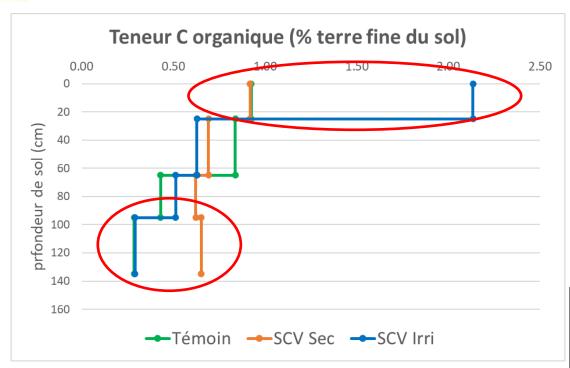



FIG. 4. The effect of burrowing rats on the growth of the plum under grass (June 21st, 1923)

Sir Albert Howard – An Agricultural Testament
Oxford University Press, 1943

Carbone

- Stockage SCV irrigué > SCV sec et témoin
- Quelques formules :
 - Stock C (T/ha) = %C x da x épaisseur x (100-%cailloux)/100
- Stockage SCV irrigué > SCV sec et témoin
- SCV sec et témoin comparables :
 - Proches en surface
 - En profondeur SCV sec >témoin

- Effet irrigation très marqué : forte concentration en surface en SCV.
- Stratification moins marquée en SCV sans irrigation: d'avantage de stock en profondeur que dans les autres modalités.

		Staals C (T/ha	
Profondeur	Témoin	Stock C (T/ha) SCV Sec	SCV Irri
0-25	31.5	28.6	64.5
25-50	31.7	35.0	25.8
50-90	36.0	27.8	34.9
90-120	18.7	26.3	12.5
Total à 120	118.0	117.6	137.6

+ 20 tC/ 120 en 10 ans = 25 pour mille/an

À la lumière des évaluations multicritères Bilan caractéristiques systèmes de l'ACS: stables ou variables ?

Souvent pas assez de données pour conclure

Données en masse (y compris statistiques): pas assez d'ACS

Données individuelles bien qualifiées (pédoclimat, historique ACS...) : difficultés à extrapoler

Mixer les approches d'acquisition de références et introduire de la simulation

Caractéristiques plutôt stables:

- Baisse des charges > degrés de liberté
- Caractère plus aléatoire des rendements et diversification > baisse du chiffre d'affaires
- Enrichissement en MO de la couche superficielle avec tous les effets afférents: pas d'érosion, infiltrabilité, réduction de l'hétérogénéité entre parcelles ...
- Fonction de maîtrise des adventices et des couverts dépendante du glyphosate (et autres herbicides)... ou du travail du sol

L'ACS est par essence un système en mouvement

21/06/2022

Rotations, choix des couverts et itinéraires techniques sont en constante évolution

Merci de votre attention

