Tropospheric ozone a threat for the feeding of mankind?

Jean-François Castell¹⁾ & Jürgen Bender²⁾

- 1. UMR Ecosys, INRA, AgroParisTech, université Paris-Saclay, 78850, Thiverval Grignon (F)
- 2. Thünen-Institut für Biodiversität, Braunschweig (D)

Ozone concentrations are variable over time (... and space)

Hourly ozone concentrations, les Ulis (F), 2015

J-F. Castell & J. Bender

Ozone damage to crops can be a response to:

Short-term episodes

Plants develop characteristic injury to the leaves which affects economic value

Cumulative exposure

Reduction in yield quantity and quality of **key food crops**

J-F. Castell & J. Bender Tro

J-F. Castell & J. Bender

Short-term exposure (OTC experiments, Braunschweig)

Ozone injury on spring onion (Allium fistulosum cv. Polo)

Ozone injury on spinach (Spinacea oleracea cv. Matador)

J-F. Castell & J. Bender

Short-term exposure: Lettuce

100 % commercial loss overnight after a 5 d ozone episode (daily max: 80-100 ppb)

Introduction	Main Processes	Variability	quality	Economic impacts	Future	Conclusion
--------------	-------------------	-------------	---------	---------------------	--------	------------

Long-term exposure

Open-top chambers (Braunschweig)

J-F. Castell & J. Bender

Long-term exposure (OTC experiments, Braunschweig) Winter wheat cvs. 'Astron' and 'Pegassos'

J-F. Castell & J. Bender

Introduction	Main Processes	Variability	quality	Economic impacts	Future	Conclusion
	FIOCESSES			inipacts		

Sensitive	Moderately	Tolerant	
	sensitive		
Peas and beans	Alfalfa (14)	Strawberry (1)	
(including peanut) (30)	Water melon (14)	Oat (0)	
Sweet potato (28)	Tomato (13)	Broccoli (-5)	
Orange (27)	Olive (13)		
Onion (23)	Field mustard (12)		
Turnip (22)	Sugar beet (11)		
Plum (22)	Oilseed rape (11)		
Lettuce (19)	Maize (10)		
Wheat (18)	Rice (9)		
Soybean (18)	Potato (9)		
	Barley (6)		
	Grape (5)		

□ In brackets: decrease yield at 60 ppb compared to yield at 30 ppb, using 7h mean ozone concentration

 \Box Variety-specific responses, so scope for breeding more O₃ tolerance

□ New varieties often more sensitive than older varieties

Genotypic variation in ozone sensitivity: Bush beans

Food and feed quality (1)

Change primary metabolites (carbohydrates, proteins)

□ Change secondary metabolites:

- vitamins and other anti-oxidants
- compounds with range of anti-fungal/bacterial/ microbial activities & anticarcinogenic properties

□ Wheat/potato:

Decrease carbohydrate, increase protein content

- positive & negative impacts on baking/frying quality or further food processing (depending on use)
- □ Oil producing crops: often decrease oil content

Grapes and watermelon: decline sugar content

Food and feed quality (2)

Decline forage quality:

Can lead to lower milk and meat production

- reduced digestibility (increase lignine, early die-back, decline legumes)
- changes nutrient content
 (protein, sugars, starch, minerals)
- secondary metabolites ('anti-nutrients')

Development of ozone critical levels food/feed quality required

Total loss of consumable food value (fractional reduction in yield × fractional reduction in nutritive quality) need to be considered in economic impact assessments

Impact Assessments

from simple concentration-response functions (AOT40)

J-F. Castell & J. Bender

Impact Assessments from simple concentration-response functions (AOT40)

Estimation of yield losses caused by ozone in the Ile-de-France region in 2001

(Castell & Lebard, 2003, Poll. Atm.)

Changes in Wheat production (kg/ha) estimated from two climate scenarios wheat, using economic model (AROPAj) coupled with simple ozone dose-response functions (Humblot *et al.*, 2013, Ecol. Economics)

Impact Assessments using Flux-based Yield Response functions

J-F. Castell & J. Bender

Introduction	Main	Variability	quality	Economic	Future	Conclusion
	Processes		impacts			

Losses wheat and tomato EU 27 + Norway + Switzerland

	Wh	eat	Tomato	
	2000	2020	2000	2020
Yield loss per grid square (%)	13.7 ¹	9.07 ¹	9.4 ²	5.7 ²
Production loss (million t)	26.89	16.45	2.64	1.62
Economic loss (billion Euro)	3.20	1.96	1.02	0.63
EMEP grids exceeding CL (%)	84.8 ¹	82.2 ¹	77.8 ²	51.3 ²

¹based on all grid squares with wheat production,

 2 based on grid squares with > 1 tonne of production

What research for the future?

Replace empirical dose-response functions with more mechanistic models

- Better understand and integrate tolerance mechanisms (detoxification, etc.)
- Identify indicators of ozone tolerance to better describe intra- and interspecific variability

Develop knowledge on quality, including nutritional quality

Conclusion

- Ozone is actually the main air pollutant responsible for crop yield losses.
- Economic impacts are considerable
- Empirical impacts estimation tools need to be improved
- Significant effects on crop quality
- More research is needed to assess the impacts of ozone on nutritive value

