

« Une passion : Connaître,Une ambition : Transmettre »

Evaluation des risques sanitaires et environnementaux : Pourquoi tant de controverses?

Philippe STOOP

Membre Correspondant,

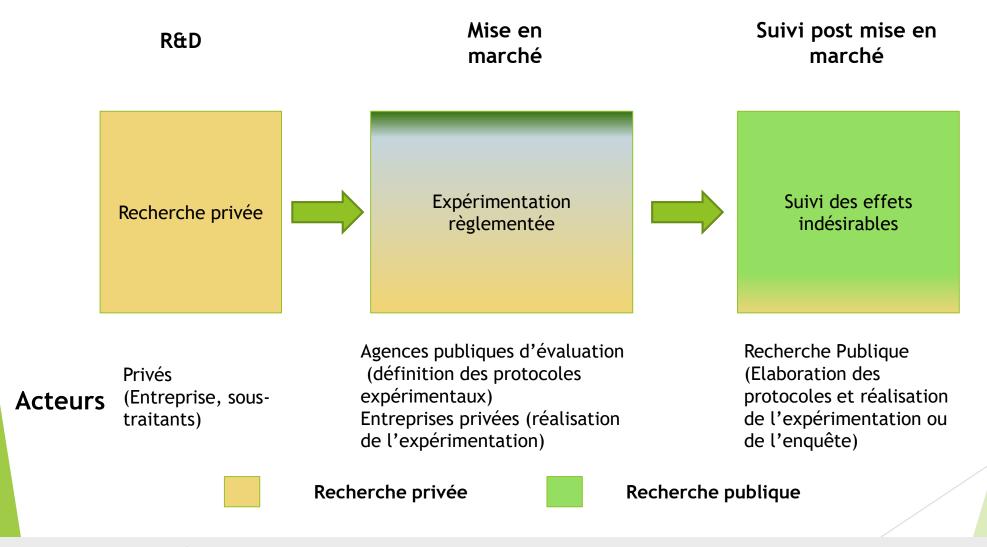
Section 9

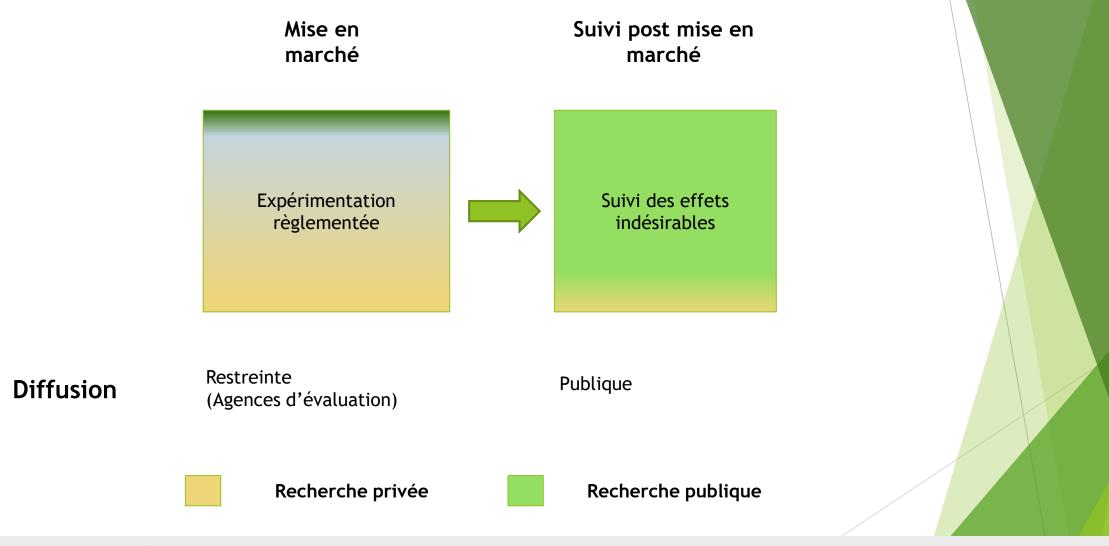
Pourquoi tant de controverses?

- Toxicité du glyphosate (Roudup):
 - Avis du CIRC en contradiction apparente avec celui des agences d'évaluation (EFSA, ANSES, ECHA, EPA,...)
- Définition réglementaire des perturbateurs endocriniens
 - Difficulté de trouver un consensus sur la définition des perturbateurs endocriniens en droit européen : Lobbying ou difficulté scientifique réelle?
- Des polémiques incompréhensibles pour le grand public, qui alimentent le discrédit des agences sanitaires

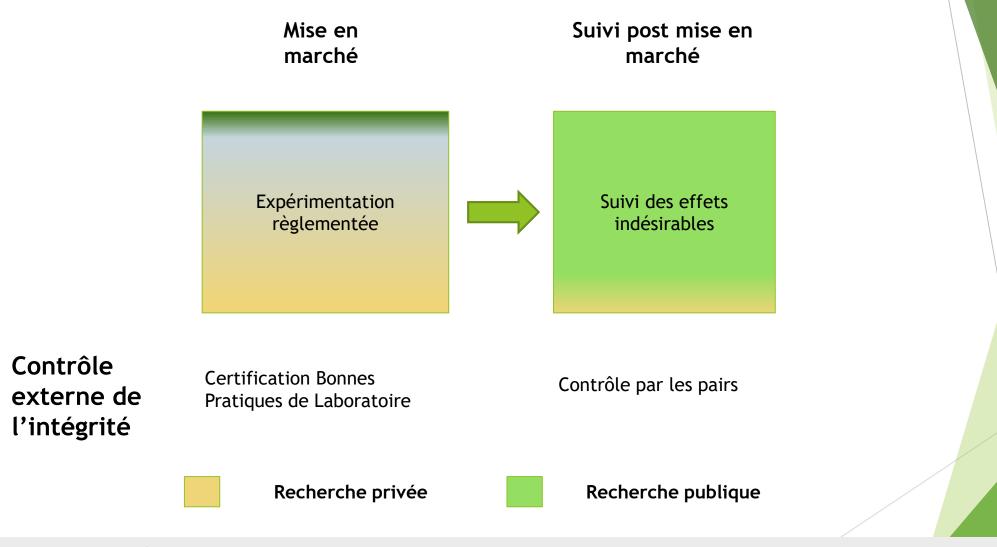
Pourquoi tant de controverses ?

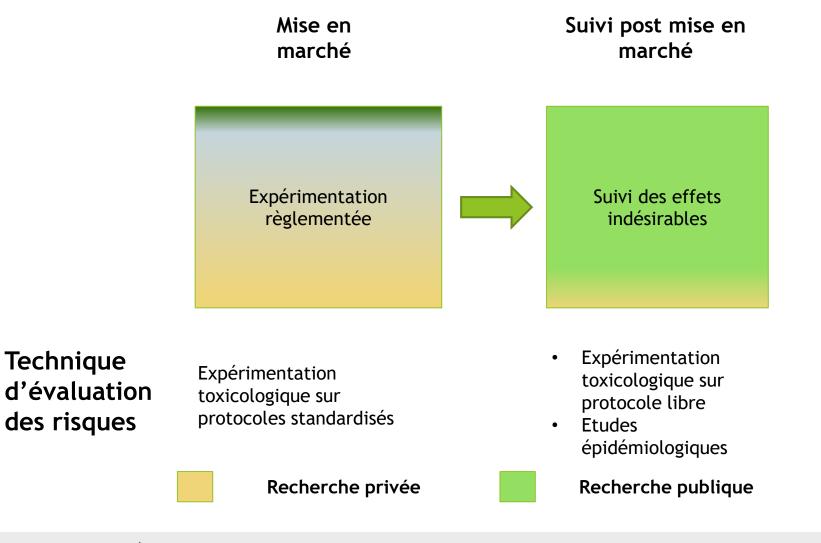
- Des raisons médiatiques :
 - Goût des medias et réseaux sociaux pour le sensationnel et la polémique
 - Discrédit des « élites » et de l'entreprise
- Des raisons scientifico-médiatiques :
 - Prise de parole croissante de chercheurs en opposition avec les agences d'évaluation

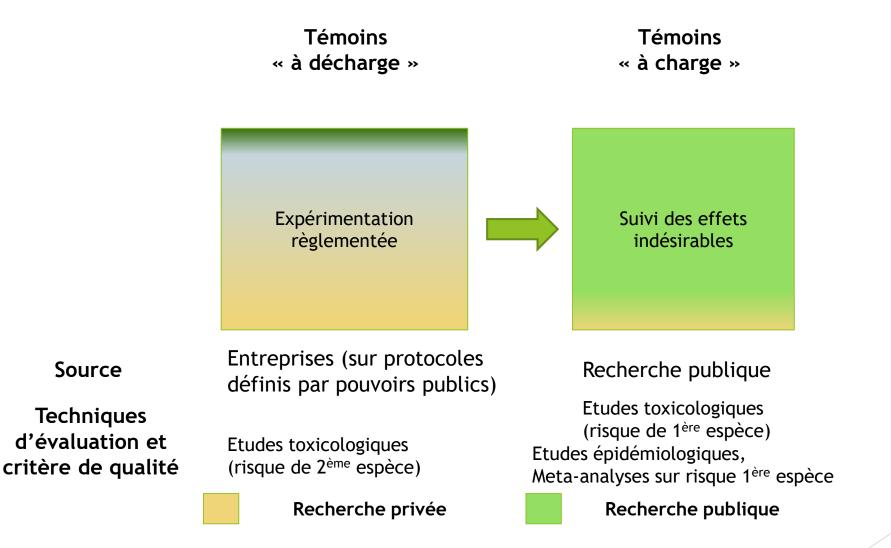

Mais aussi de vraies raisons scientifiques...


Evaluation des risques sanitaires et environnementaux : Pourquoi tant de controverses?

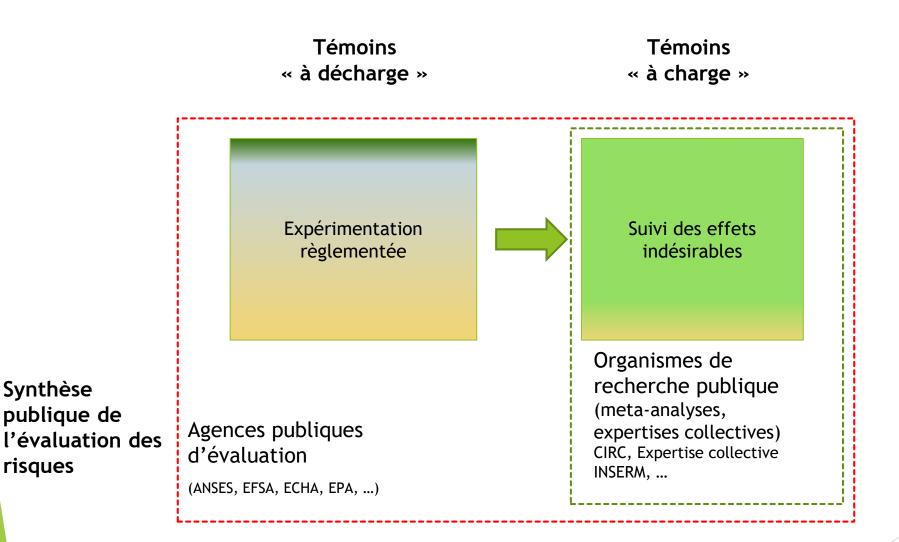
- Les données du problème
- Retour sur deux notions de base, et leurs conséquences en expertise sanitaire
 - → Risques de 1ère et 2ème espèce
 - O Danger et Risque
- Les sources scientifiques de controverses
 - ⊕ Le paradoxe de l'"astrologue statisticien"
 - La "cacophonie de la recherche"
 - Les paradoxes de la règlementation
- Quelques propositions pour apaiser les débats







Evaluation des risques : une synthèse asymétrique



Source

Techniques

Evaluation des risques : une synthèse asymétrique

Synthèse

risques

Evaluation des risques sanitaires et environnementaux : Pourquoi tant de controverses?

- Les données du problème
- O Retour sur deux notions de base, et leurs conséquences en expertise sanitaire
 - → Risques de 1ère et 2ème espèce
 - O Danger et Risque
- Les sources scientifiques de controverses
 - ⊕ Le paradoxe de l'"astrologue statisticien"
 - La "cacophonie de la recherche"
 - Les paradoxes de la règlementation
- Quelques propositions pour apaiser les débats

Retour sur deux notions de base, Et leurs conséquences en expertise sanitaire

- ullet Les risques de 1ère et 2ème espèce α et β :
 - Θ Risque de 1ère espèce α :
 Attribuer à un produit un effet sanitaire qu'il n'a pas réellement
 - Risque de 2^{ème} espèce β:
 Ne pas détecter un effet qui existe réellement
- A effectif étudié égal, les deux risques sont antagonistes
- De risque à réduire en priorité dépend du but de l'expérimentation :
 - Θ Pour la recherche, minimiser le risque α
 - Pour l'expérimentation d'homologation, minimiser le risque β

Retour sur deux notions de base, Et leurs conséquences en expertise sanitaire

Danger:

 Propriété intrinsèque des produits, des équipements, des procédés...pouvant entraîner un dommage

Exposition d'une cible (salarié, entreprise, environnement y compris la population...) à un danger. Le risque est caractérisé par la combinaison de la probabilité d'occurrence d'un événement redouté (accident) et de la gravité de ses conséquences.

Météorites:

Danger Risque

http://www.inrs.fr/demarche/risques-industriels/definition-risque-industriel.html

Danger / Risque : Conséquences sur processus d'autorisation des pesticides

- O Vision "classique": réglementation basée sur le risque
 - Relation croissante entre l'exposition au produit et la probabilité d'une occurrence d'un dommage : risque = danger* exposition
 - détermination de l'exposition en dessous de laquelle on n'observe plus d'effet (à court et long terme)
 - Détermination de l'exposition potentielle des utilisateurs, des consommateurs et des organismes non cible
 - Produit autorisé si et seulement si l'exposition des organismes non cibles ne peut être atteinte en condition d'usage normal
- Ce processus suppose une relation uniformément croissante et facilement identifiable entre l'exposition et les effets du produit

Danger / Risque : Conséquences sur processus d'autorisation des pesticides

- O Conséquences sur le niveau de preuve attendu :
 - Identification du danger :
 quelques résultats isolés, quelle que soit l'exposition, suffisent pour montrer un
 danger, pas de contrôle de leur cohérence
 - Evaluation d'un risque : suppose l'établissement d'une liaison « dose d'exposition*effet », donc de nombreuses expérimentations, dont on peut vérifier la cohérence

https://www.usinenouvelle.com/article/avis-d-expert-les-impasses-d-une-reglementation-des-perturbateurs-endocriniens-basee-sur-le-danger.N539619

Evaluation des risques sanitaires et environnementaux : Pourquoi tant de controverses?

- Les données du problème
- Retour sur deux notions de base, et leurs conséquences en expertise sanitaire
- Les sources scientifiques de controverses
 - Le paradoxe de l'"astrologue statisticien"
 - La "cacophonie de la recherche"
 - Les paradoxes de la règlementation
- Quelques propositions pour apaiser les débats

- On astrologue veut démontrer l'existence d'un lien entre signe astrologique et cancer : quelle probabilité $P_{5\%}$ pour qu'il obtienne un résultat statistiquement significatif (α = 5%)?
- Hypothèse 1 : les personnes de signe Cancer ont une incidence de cancer (toutes localités confondues) plus élevée que celles des autres signes astrologiques
 - O Un seul test statistique réalisé : P_{5%} =5%

 ⊕ Un astrologue veut démontrer l'existence d'un lien entre signe astrologique et cancer : quelle probabilité P_{5%} pour qu'il obtienne un résultat

statistiquement significatif (α = 5%)?

Hypothèse 2 :

Même étude, en distinguant 15

localisations de cancer :

$$P_{5\%} = 1-0.95^{15} = 53.7\%$$

OR : Odds Ratio p : Probabilité critique

3
L
3
3
5
2
ļ
7
3
)
1
3
3
ļ
3

USA

- On astrologue veut démontrer l'existence d'un lien entre signe astrologique et cancer : quelle probabilité $P_{5\%}$ pour qu'il obtienne un résultat statistiquement significatif (α = 5%)?
 - ⊕ Hypothèse 3 : hypothèse 2, étendue à tous les signes astrologiques,
 soit 12*15 = 180 couples signe astrologique * type de cancer

$$P_{5\%} = 1-0.95^{180} = 99.99\%$$
 $P_{1\%} = 1-0.99^{168} = 83.62\%$

Résultat le plus probable :

- 8 à 10 OR significativement différents de 1
- 1 ou 2 OR hautement significatifs

- Dans une expérimentation complexe, on obtient nécessairement des résultats significatifs, même si le produit testé est inoffensif
- La question n'est plus de savoir si on a des résultats significatifs, mais si on
 a un excès de résultats significatifs par rapport au risque de 1ère espèce
 - plus de 5% de résultats significatifs
 - oplus de 1% de résultats hautement significatifs

- Comment reconnaître un résultat "vraiment" significatif?
- \varTheta 1ère méthode : un peu de bon sens !

	Fra	nce	U	SA	Ch	ne	Br	ésil	Moy	enne
Type de cancer	OR	р	OR	р	OR	р	OR	р	OR	р
Lèvres-cavité buccale	1.21	0.65	2.18	0.02	1.12	0.73	0.92	0.78	1.40	0.06
Poumon	0.84	0.69	2.25	0.01	1.26	0.49	0.89	0.71	1.35	0.09
Estomac	1.59	0.28	0.72	0.29	1.16	0.66	1.05	0.88	1.07	0.69
Foie	0.82	0.65	1.11	0.74	0.69	0.28	0.69	0.23	0.73	0.06
Rein	1.60	0.28	0.74	0.33	1.10	0.79	1.06	0.85	0.95	0.76
Prostate	1.19	0.69	0.62	0.13	0.86	0.64	1.07	0.82	0.98	0.90
Vessie	1.11	0.81	0.36	< 0.01	1.05	0.89	0.53	0.04	0.70	0.07
Colon	0.82	0.65	1.96	0.04	1.45	0.27	1.53	0.17	1.26	0.19
Cerveau	0.97	0.95	1.06	0.86	1.13	0.72	1.19	0.58	1.03	0.87
Lymphome de Hogdkin	0.84	0.67	0.82	0.53	0.53	0.07	0.81	0.49	0.79	0.16
Lymphome non hodgkinien	1.07	0.88	0.48	0.02	0.93	0.83	0.41	< 0.01	0.74	0.08
Testicule	1.92	0.14	0.98	0.95	0.68	0.26	0.62	0.13	0.90	0.55
Thyroïde	0.52	0.15	1.58	0.16	0.52	0.06	1.03	0.93	1.00	0.99
Pancreas	0.66	0.36	1.24	0.50	0.76	0.42	1.45	0.24	1.02	0.92
Melanome	1.06	0.89	2.02	0.03	0.60	0.13	1.53	0.18	1.27	0.18

Interprétation astrologique :

-des corrélations significatives observées dans 2 des pays étudiés

- en moyenne, des effets significatifs à 10% pour 5 types de cancers

OR : Odds Ratio *p* : Probabilité critique

- Comment reconnaître un résultat "vraiment" significatif?
- 1ère méthode : un peu de bon sens !

Pers	onnes	de sig	ne ast	rologiqu	ie Can	cer

	Fra	nce	U	SA	Ch	ine	Br	ésil	Moy	enne
Type de cancer	OR	р	OR	р	OR	р	OR	р	OR	р
Lèvres-cavité buccale	1.21	0.65	2.18	0.02	1.12	0.73	0.92	0.78	1.40	0.06
Poumon	0.84	0.69	2.25	0.01	1.26	0.49	0.89	0.71	1.35	0.09
Estomac	1.59	0.28	0.72	0.29	1.16	0.66	1.05	0.88	1.07	0.69
Foie	0.82	0.65	1.11	0.74	0.69	0.28	0.69	0.23	0.73	0.06
Rein	1.60	0.28	0.74	0.33	1.10	0.79	1.06	0.85	0.95	0.76
Prostate	1.19	0.69	0.62	0.13	0.86	0.64	1.07	0.82	0.98	0.90
Vessie	1.11	0.81	0.36	< 0.01	1.05	0.89	0.53	0.04	0.70	0.07
Colon	0.82	0.65	1.96	0.04	1.45	0.27	1.53	0.17	1.26	0.19
Cerveau	0.97	0.95	1.06	0.86	1.13	0.72	1.19	0.58	1.03	0.87
Lymphome de Hogdkin	0.84	0.67	0.82	0.53	0.53	0.07	0.81	0.49	0.79	0.16
Lymphome non hodgkinien	1.07	0.88	0.48	0.02	0.93	0.83	0.41	< 0.01	0.74	0.08
Testicule	1.92	0.14	0.98	0.95	0.68	0.26	0.62	0.13	0.90	0.55
Thyroïde	0.52	0.15	1.58	0.16	0.52	0.06	1.03	0.93	1.00	0.99
Pancreas	0.66	0.36	1.24	0.50	0.76	0.42	1.45	0.24	1.02	0.92
Melanome	1.06	0.89	2.02	0.03	0.60	0.13	1.53	0.18	1.27	0.18

Interprétation statistique :

- -un excès de résultats significatifs à 5%, mais aucun au seuil de 10%
- -distribution symétrique des résultats
- -aucune cohérence entre les pays
- => Aucune démonstration d'un effet du signe astrologique

OR : Odds Ratio p : Probabilité critique

http://www.forumphyto.fr/2016/04/01/pours-sourire-et-sinstruire-statisticien-epidemiologiste-astrologue-quel-scientifique-etes-vous/

- Comment reconnaître un résultat "vraiment" significatif?
- \varTheta 1ère méthode : un peu de bon sens !

Misque de lymphome non-nougkimen							
Présence de pesticides	Detroit	Iowa	Los Angeles	Seattle	Moyenne		
dans les maisons	OR p	OR p	OR p	OR p	OR p		
α-chlordane	1.21 0.65	2.18 0.02	1.12 0.73	0.92 <i>0.78</i>	1.40 0.06		
γ-chlordane	0.84 0.69	2.25 0.01	1.26 0.49	0.89 0.71	1.35 0.09		
Carbaryl	1.59 0.28	0.72 0.29	1.16 0.66	1.05 0.88	1.07 0.69		
Chlorpyrifos	0.82 0.65	1.11 0.74	0.69 0.28	0.69 0.23	0.73 0.06		
cis-permethrin	1.60 0.28	0.74 0.33	1.10 0.79	1.06 0.85	0.95 <i>0.76</i>		
trans-permethrin	1.19 0.69	0.62 0.13	0.86 0.64	1.07 0.82	0.98 0.90		
2,4-D	1.11 0.81	0.36 < 0.01	1.05 0.89	0.53 0.04	0.70 0.07		
DDE	0.82 0.65	1.96 0.04	1.45 <i>0.27</i>	1.53 0.17	1.26 0.19		
DDT	0.97 0.95	1.06 <i>0.86</i>	1.13 0.72	1.19 0.58	1.03 0.87		
Diazinon	0.84 0.67	0.82 0.53	0.53 0.07	0.81 0.49	0.79 0.16		
Dicamba	1.07 0.88	0.48 0.02	0.93 0.83	0.41 < 0.01	0.74 0.08		
Methoxychlor	1.92 0.14	0.98 <i>0.95</i>	0.68 <i>0.26</i>	0.62 0.13	0.90 0.55		
o-phenylphenol	0.52 0.15	1.58 <i>0.16</i>	0.52 0.06	1.03 0.93	1.00 0.99		
Pentachlorophenol	0.66 0.36	1.24 0.50	0.76 0.42	1.45 0.24	1.02 0.92		
Propoxur	1.06 0.89	2.02 0.03	0.60 0.13	1.53 0.18	1.27 0.18		

Interprétation toxicologique:

-Des données exploitées dans deux publications successives, dans de revues à comité de lecture (Impact Factor :13)

OR: Odds Ratio

p : Probabilité critique

http://www.forumphyto.fr/2016/05/19/la-peche-aux-alphas-niveau-2-cours-de-perfectionnement/#_ftn2

- Comment reconnaître un résultat "vraiment" significatif?
- 2ème méthode : tests statistiques complémentaires :
 - Test de Bonferroni
 - Procédures FDR (False Discovery Rate)
- Des tests rarement pratiqués... et encore plus rarement exploités!

- Exemple d'une publication récente sur l'effet des perturbateurs endocriniens sur les troubles du comportement des jeunes garçons :
 - 13 perturbateurs endocriniens étudiés, croisés avec 7 indicateurs du comportement :
 - ⊙ 5,22% de résultats significatifs à 5%, 9,89% de résultats significatifs à 10%
 - Probabilité critique après test FDR: 0,42: confirme que les résultats
 "significatifs" sont en fait dûs au risque de 1ère espèce
- Onclusions des auteurs (dans l'article et dans l'abstract):
 "Several phenol and phthalate biomarkers were associated with increased scores on the SDQ subscales at 3and/or5y."

http://www.forumphyto.fr/2017/10/10/perturbateurs-endocriniens-une-etude-hautement-significative-des-troubles-du-comportement-des-chercheurs/

- Dans une expérimentation complexe, on obtient nécessairement des résultats significatifs, même si le produit testé est inoffensif
- La question n'est plus de savoir si on a des résultats significatifs, mais si on a un excès de résultats significatifs par rapport au risque de 1ère espèce
 - plus de 5% de résultats significatifs
 - plus de 1% de résultats hautement significatifs
- La seule façon vraiment sure de confirmer un résultat à significativité incertaine : retrouver EXACTEMENT le même résultat sur un jeu de données indépendant du premier

Evaluation des risques sanitaires et environnementaux : Pourquoi tant de controverses?

- Les données du problème
- Retour sur deux notions de base, et leurs conséquences en expertise sanitaire
 - Danger et Risque
- Les sources scientifiques de controverses

 - La "cacophonie de la recherche"
 - Les paradoxes de la règlementation
- Quelques propositions pour apaiser les débats

La « cacophonie de la recherche »

• Recherche et homologation : techniques proches, objectifs différents

	Type d'expérimentation			
	Homologation	Recherche		
Protocoles	Simples et standardisés	Complexes et adaptés à chaque expérience		
Risque à minimiser	2 ^{ème} espèce	1 ^{ère} espèce		
Traitement des résultats incertains	Répéter expérience	Nouveau protocole pour lever les incertitudes laissées par l'expérience originale		

La « cacophonie » de la recherche

Un exemple parmi d'autres :

M Pollutions

PM 2,5 et Nox : 38 000 morts/an dans le monde...

La « cacophonie » de la recherche

Incidence des tumeurs du cerveau dans la cohorte Agrican, comparaison entre utilisateurs et non utilisateurs de pesticides

Date de parution	Type de tumeurs	Méthode	Résultat	Remarque		
	7 Malignes	Uncidences standardisées	Excès de 118% chez les utilisateurs	Intervalle de confiance très élevé		
11/07/2017			de pesticides, non significatif	pour les non-utilisateurs de		
			de pesticides, non significatii	pesticides (2 cas observés seulement)		
24/07/2017	Malignos Dánignos	IMODELE DE COX	Excès significatif de 96% chez les		Pas d'analyse de sensibilité sur	
24/07/2017	ivialighes+bellighes		utilisateurs de pesticides	l'incertitude des incidences		
	Malignes+Bénignes In	Incidences brutes	Aucune différence	Non publié, mais calcul facile à faire à		
			Aucune unierence	partir de la publication du 24/07		

- Des résultats apparemment contradictoires dans deux publications :
 - Sur la même cohorte
 - Parues à deux semaines d'intervalle
 - Avec 4 auteurs communs...

http://www.forumphyto.fr/wp-content/uploads/2017/07/1707AgricanTumeursCerveauArticleComplet.pd

http://www.forumphyto.fr/2017/12/18/tumeurs-du-cerveau-dans-la-cohorte-agrican-le-mystere-reste-entier/

L'approche « alphacentrique » de la recherche

- O Une conséquence des mécanismes de la recherche et de son évaluation :
 - \odot Priorité aux résultats significatifs (risque α faible)
 - Manque d'intérêt pour les résultats non significatifs
 - Aucune incitation à répliquer les résultats incertains
 - Accumulation de résultats significatifs non confirmés, sur des protocoles difficilement comparables
 - 🛛 Méta-analyses :
 - $oldsymbol{\Theta}$ visent toujours à regrouper les résultats pour réduire α , jamais pour réduire β

Evaluation des risques sanitaires et environnementaux : Pourquoi tant de controverses ? - 30 mai 2018

- Les données du problème
- O Retour sur deux notions de base, et leurs conséquences en expertise sanitaire
 - Danger et Risque
- Les sources scientifiques de controverses

 - ⊕ La "cacophonie de la recherche"
 - O Les paradoxes de la règlementation européenne
- Quelques propositions pour apaiser les débats

Les paradoxes de la réglementation européenne

- O Une réglementation basée sur le danger et non plus sur le risque :
 - → Le raisonnement « classique » basé sur le risque est critiqué pour deux raisons :
 - Pour les perturbateurs endocriniens : résultats scientifiques en faveur d'un effet dose non monotone
 - Pour les produits cancérogènes : difficulté et délai important pour la mise en évidence des effets cancérogènes chez l'homme
- Depuis 2011 (règlement CE 1107/2009), un pesticide ne peut être autorisé s'il est classé cancérogène probable ou perturbateur endocrinien probable (en terme de danger, quel que soit le risque)
- Une décision raisonnable, mais dont les conséquences réglementaires n'ont pas été tirées

Définition du danger : Des critères très souples

Critères de définition pour des « preuves suffisantes de cancérogénicité » en expérimentation animale (Règlement CE no 1272/2008):

« un lien de causalité est établi... Dans (a) au moins deux espèces animales ou (b) au moins deux études indépendantes sur une espèce...[ou] une incidence accrue de tumeurs chez les deux sexes d'une même espèce dans une étude correctement réalisée, **de préférence** selon les bonnes pratiques de laboratoire.»

- Lien de causalité :
 - « liaison significative (à 5%) entre exposition à l'agent étudié et une incidence accrue des néoplasmes malins ou d'une combinaison donnée de néoplasmes bénins et de néoplasmes malins »
- Des critères très souples, sans conséquences dans une réglementation basée sur le risque, mais aberrants (et non révisés) dans une réglementation basée sur le danger.

Définition du danger : Des critères très souples

- Pour un produit inoffensif :
 - La probabilité de trouver par erreur un effet cancérigène dans une étude est de 5% (=1/20)
 - Avec 40 études (ou 40 tests statistiques différents, dans un nombre plus faible d'études), il devient très probable d'avoir 2 études indépendantes montrant une liaison significative à 5% (« un lien de causalité ») : problème des tests multiples
- Appliquées sans discernement, les lignes directrices officielles conduisent inévitablement à « trouver » un danger pour tout produit très étudié (cf polémique sur le glyphosate)

Les paradoxes de la réglementation européenne

Réglementation basée sur le danger :

- Incompatible avec une analyse Risque/Bénéfice
- Inapplicable à de nombreux secteurs (pharmacie, transports,...)
- Suppose implicitement une utilité sociale nulle ou faible du secteur auquel on l'applique : devrait susciter un débat public (pourquoi pesticides, et non cosmétiques?)

Evaluation des risques sanitaires et environnementaux : Pourquoi tant de controverses ? - 30 mai 2018

- Les données du problème
- Retour sur deux notions de base, et leurs conséquences en expertise sanitaire
 - Danger et Risque
- Les sources scientifiques de controverses
 - → Le paradoxe de l'"astrologue statisticien"
 - La "cacophonie de la recherche"
 - O Les paradoxes de la règlementation européenne
- Quelques propositions pour apaiser les débats

Rappel

- Principe de précaution : n'autoriser la mise en marché que des produits ayant montré leur innocuité
- Traduction statistique de l'innocuité : absence de différence significative entre population exposée et population témoin
- $oldsymbol{\Theta}$ Le fondement de l'expertise sanitaire : garantir le faible risque eta de ces résultats non significatifs
- Une démarche à laquelle les chercheurs sont :
 - Peu familiarisés
 - O Dissuadés par les mécanismes d'évaluation de la recherche

Pourquoi tant de controverses ?

- Les raisons scientifiques :
 - **4** Biais α/β :
 - o chercheurs sensibilisés au risque de 1ère espèce, agences au risque de 2ème espèce
 - Manque de méthodes statistiques reconnues :
 - Pour contrôler l'effet « multiple testing »
 - Pour méta-analyse du risque de 2ème espèce
 - « Cacophonie de la recherche »
 - Pas de coordination entre labos
 - Pas de reproduction des publications à confirmer
 - (Pas d'équivalent des postulats de Koch pour l'épidémiologie)

http://www.forumphyto.fr/2016/10/04/peche-aux-alphas-contre-chasse-aux-petits-betas-pourquoi-lanalyse-des-risques-environnementaux-ne-devrait-pas-etre-seulement-un-travail-de-chercheurs/

Quelles solutions possibles?

Recherche publique :

- Définir des « postulats de Koch » de l'épidémiologie
- Définir des recommandations pour l'intégrité scientifique des protocoles expérimentaux

Recherche privée :

« Déclassifier » les données toxicologiques et écotoxicologiques des dossiers d'AMM, dans un délai raisonnable après la mise en marché.

Quelles solutions possibles?

Agences d'évaluation :

- Effort pédagogique et engagement médiatique
- Commande d'expérimentations de confirmation des résultats de la recherche publique (par autosaisine, ou sur demande des parties prenantes)
- Définir des méthodes statistiques de référence pour :
 - Évaluation de l'effet «tests multiples» (moins restrictifs que test de Bonferroni)
 - Méta-analyse sur le risque de 2ème espèce
- Définir des règles de consensus sur l'évaluation du danger (et non plus du risque)
- Quantifier le poids de la preuve en fonction des dispositifs (études prospectives vs études cas-témoin))

Conclusion

- Il est normal que l'avis des agences sanitaires diffère fréquemment de celui des chercheurs
- La crédibilité des agences est indispensable pour une application du principe de précaution :
 - Nécessité d'un effort de communication et de pédagogie des agences
 - Attention aux évolutions réglementaires mal réfléchies qui conduisent à des impasses juridico-scientifiques
 - Besoin de pouvoirs supplémentaires pour les agences, afin de requérir des compléments d'études sur les publications scientifiques posant question

